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We present some ideas for a new algorithm for the LAD curve-fitting problem for n points in 

ks n dimensional space. When k is about +n it begins to outperform the best current methods, 

and the advantage increases with k. The algorithm should be of interest in approximation theory 

and in robust regression. Moreover our approach may be useful in linear optimization, expecially 

in linear programming. 

1. Introduction and summary 

Given n points (xi, _Yi) E Rk+‘, the discrete L,, or least absolute deviation (LAD) 

curve-fitting problem seeks c E Rk to minimize the absolute deviation (AD) distance 

function 

where, under obvious notation, we have written y’=(y,, . . . , y,) and the ith row of 

X is xi. The minimizing c determines a k-dimensional hyperplane 

that ‘best’ fits the n points in the sense of discrete L,. In the curve-fitting context, 

given a function h, n points t,, . . . , t, E R, and k basis functions Q,, . . . , Gk, write 

yi= h(t,) and xij = Gj(t,). The minimizer E defines Pk= c:=, Zj@j, the k-term ap- 

proximation that best fits h on the ti’s in the LAD sense; that is, C:=, Jh(t;) -Pk(ti)j 
is minimal. 

The LAD fitting method seems to have greater antiquity than least squares. In 

1789 Laplace (see Eisenhart [l 1 J) developed an algorithm to minimize (1) when 
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k = 1. It was stimulated by a geometric method of Boscovich [l 1) when 

this is the case k = 2 with Xii = 1 and the fit constrained to pass through the centroid 

of the data. 

In 1809 Gauss (see Sheynin 119, p. 3111) stated without proof that a solution c 

to (1) satisfies yi =(c, Xi) for a certain set of k points (Xi, _,Vi)* This fact would imply 

a crude algorithm that minimizes f by searching all the (t! c’s determined by k of 

the n given points. 

Much later Edgeworth [9,10] formulated a general procedure for (1) and in 1930 

Rhodes [15] devised a method for k = 3 that seems easy to generalize, as pointed out 

by Singleton [20]. None of these methods was implemented when computers began 

to appear, possibly because they were too complicated. In fact it may be the com- 

putational complexity of LAD (as well as the analytical intractability in a statistical 

setting) that forced it to take the back seat to least squares in linear regression. 

The connection with linear programming (LP) [7,12,23] and the development of 

Simplex codes led to the first automatic procedures for LAD curve fits. Subsequent- 

ly there have been many contributions to the subject, among them [I, 8,13,14,17, 

and 221. In addition the 1977 Communications in Statistics, Vol. B6, No. 4, is 

devoted to LAD and contains a comprehensive reference list. See also [25]. 

At least three good LAD algorithms have been implemented. Barrodale and 

Roberts (BR) [3,4] brought about an important advance by showing how to imple- 

ment an LP version of (1) in an efficient way by modifying the Simplex method. 

Later, Bartels, Conn and Sinclair (BCS) [S] used a projected gradient method to 

derive what turns out to be a very similar algorithm. Finally Bloomfield and Steiger 

(BS) [6] have proposed yet another method that may reduce the complexity of mini- 

mizing (1) even further. All three fit into the general framework laid out by Robers 

and ben Israel 1161, BR even matching up in the detailed computations. 

Anderson and Steiger [2] discuss the similarities and differences between the three 

methods and study their computational complexities. It is argued that BCS and BS 

are linear in n and that all three are linear in k; as n increases, the complexity of 

BR seemed to increase faster than linearly, probably due to an inefficient line 

search. 

In the present paper we address the problem of limiting the computational cost 

as k increases towards n. This would be of interest in the curve fitting context, in 

robust regression and in exploratory data analysis. We convert (1) into an equivalent 

problem, one that becomes easier to solve as k grows. Specifically, given y and X, 

the problem of minimizing f in (1) may be written as 

min )Irljl,: r=y-Xc, CER~. (2) 

Suppose X has p independent columns, ps k. If A is an n -p by n matrix whose 

rows are orthogonal to the span of the columns of X (i.e., AX an (n-p) x k zero 
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matrix), then Ar = Ay. Also define b = Ay E RneP. If the rows of A are also linearly 

independent, (2) is actually equivalent to 

min g(r): Ar= b, where g(r) = I/r 11 1. (3) 

This follows from the fact that for any c E Rk, if r =y - Xc, Ar = Ay, while if Y E R” 

satisfies A(r- y) = 0, r-y is in the (p-dimensional) orthogonal complement of the 

row space of A (so r =y - Xc for some c E Rk). 

The correspondence provides further information that is relevant to iterative 

algorithms for (2) and (3). As Gauss observed, an r that minimizes (2) may be 

chosen so that at least k of its components are zero. The same property also 

characterizes solutions to (3). 

Algorithms for (1) and (2) exploit the characterization and move to the optimum 

via a finite sequence rl,, r2, . . . , rN of approximations for which g(r,) Lg(r,+ ,) and 

at least k components of r, are zero. Accordingly, if the jth component of r, is 

zero for jEB={j,,..., j,}, then c that minimizes f is the solution of the system 

The non-zero components of the optimal r satisfy 

k 

ri=y;- C CjX;j, i$B. 
/=I 

However if c has not been computed, these ri’s are also the solutions to 

The problem (3) is of interest in its own right. Seneta [18] points out that it was 

introduced in a statistical setting by Cauchy. 

It is worth noting that (3) is not dual to (I), at least in the sense used in linear 

programming. It would rather seem that (3) is a problem that is complementary to 

(1) in the sense that its data, A, are in the orthogonal complement of the original 

data, X. 

Writing the LAD problem in parametric form (l), requires the n x (k+ 1) 

augmented matrix (X 1 y). If instead it is written in non-parametric form, (3), the 

augmented matrix (A 1 b) of size n -p x n + 1 is required. Assuming p = k, the latter 

is smaller when kz+n. 

One might therefore expect a good algorithm for (3) to out-perform the best pro- 

cedures for (1) as k L in increases, even taking account of the cost in finding A and 

b. This turns out to be the case but surprisingly, the cross over point seems to be 

about k = in. 

Our algorithm for (3) is based on BS but other LAD procedures could be adapted 

in a similar way. The idea of minimizing (1) via (3) seems to carry over to functions 

other than the discrete L1 norm. For example algorithms for 

opt h(r): r=y-Xc, ceRk, h : R” --) R nonlinear (4) 
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might be simplified using the foregoing ideas, but we do not address this issue here. 

Finally (1) via (3) has bearing on bounded, feasible LP problems. The problem 

max (4 x> 

subject to 
Cx=a, 

X10 
(5) 

where C is m by IZ, m < n, is equivalent (see [5] or [21]) to a LAD fit for IZ + 1 points 

in Rm+‘. In non-parametric form, (3), it would use a data structure of size 

n-m + 1 by n + 2, assuming the row rank of C is m, and is smaller than (5) when 

m 2 (n + 1)*/(2n + 3), or about in. If C is dense, the advantage in data reduction 

becomes apparent. 

In Section 2 we give the details of the algorithm for (3), including the passage 

from (1) to (3). Section 3 contains the results of computational experiments that 

compare the performance of the new algorithm to BS. 

2. The new algorithm 

Suppose A’= (A 1 b) is given, A an m by n > m matrix of full rank and b E Rm. 
.The algorithm we give for (3) is, except for some details, quite similar to BS. 

As an initial solution take r = (6), 0 E R”-“’ the zero vector, and write A = (B) N), 
B the m x m matrix consisting of the first m columns of A, assumed without loss 

of generality to be linearly independent, N the remaining n -m columns. B is the 

initial basis and corresponds to the m (generally) non-zero elements of r. Because 

Ar=b, z=B-‘b. 
To continue, a column of B, say the pth, will leave the basis via an exchange with 

a column of N, say the qth, that will enter: z, will become 0 and 0, will become 

t#O. Our method will select q in a heuristic fashion and, once it is determined, p 

will be optimally chosen. 

Assuming that n4 has been chosen to enter, the next approximation will be found 

as a member of the one-parameter family 

r’(t) = ( > Z’(f) + te 

0 m+9 

where ej E R” is the ith unit coordinate vector and z’(0) = Z. Clearly r’(0) is the cur- 

rent solution. 

Since Ar’(t) = b, Bz’(t) + tn, = b, n, denoting the qth column of N. Thus 

z’(t)=B-‘b-tB-‘n,=z-to (6) 

where we write u = BP’n,. The current value of the objective g in (3) will now be 

W(f))= i Iri’(f)l= i Izl(t)l + ItI 
i=l i=, 

=,g, lZiwtUiI + lfl. (7) 
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The value of t that minimizes (7) defines a line y = tx that is the LAD fit through 

the origin for the points (y, zi), i= 1, . . . , m and (LO). It is easily recognized to be 

the weighted median fof the ratios zi/ui, with weight 1 ui 1, and 0, with weight 1 (see 

121 or Kd). 
If t^=O, n, may not enter the basis, so another column of N would be in- 

vestigated. Otherwise t^=zP/vP for some p, 1 spsm, and the pth term in the sum 

in (7) becomes zero. This means that z;(i) =0 so that IZ~ replaces bP (the pth 

column of B) in the next basis. The objective in (7) cannot increase because when 

t = 0, r’(t) = r is the current solution and g(r’(0)) zg((r’(t^)). 

We now describe the choice of n4, the non-basic column that will enter. Ideally 

one seeks that column which, when it optimally replaces some basis column, will 

produce the greatest reduction in the objective (3). A brute force ‘look ahead’ 

method would compute u = B-in, for each column n4 of N, minimize (7), and then 

enter that column corresponding to the smallest value of g(r’(?)). Our heuristic 

method, based on that of BS, avoids the computational cost of actually minimizing 

(7) for each n4, and usually chooses the best column anyway. 

The heuristic is based on weighted medians. If n4 were chosen, the foregoing 

procedure for optimally selecting a column to leave the basis would compute 

u = B-‘n, and minimize (7). The minimum occurs at f, the weighted median of the 

ratios zi/ui with weights / ui 1, and 0 with weight 1. We assume i# 0 or else n4 can- 

not enter. One can also express t^ as the median of the distribution function 

F(t)=(I,(r)+C lu,l)/,(l+ i lbl), 
A ,=I 

where Z”(t) is 1 on [O, 00) and 0 otherwise, and A = {i : zj/oj s t}. By definition, 

F(t^) 2 + and F(t) < + for t > L 

In (6) the current approximation corresponds to t = 0, and the next approximation 

to L For this reason the quantity 

1+-F(O)/, (9) 

approximately 1 F(t^) - F(0) 1, is a rough measure of the distance - in terms of F - 

between the current approximation and the next one. It attempts to capture the 

relative advantage of using n4 to optimally replace a basic column. 

If in (8) F(0) = +, replacement with n4 would not decrease g in (7). Excluding this 

case, either F(0) < + or F(t)+u < + as tT0, by the right continuity of F. The criterion 

in (9) would then become 

3 -F(O) if F(0) < 4, 

F(O-)-3 if F(O-)>+. 

From (8), 

+-F(O)=+- 
I( 

1 + $ lUi( + 5 \Ujl 

(10) 
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which simplifies to 

-1-CiYl~i/-C9./~,/+CLPI~i1 

2(l+C:, 14) ’ 

where Jdenotes the indices for which Zi/U; < 0, Fthe indices for which zi = 0, and 

9, those for which zi/oi > 0. 

Similarly F(O-) - f may be written as 

~l+~c.xluiI~C~luil~C~Iuil 

m+c:, 14) ’ 
so the criterion in (10) may be expressed as 

c = lCxl”~l--C~luil /-l-CJui/ 

4 2(1 + CL, Ioil> ’ 

(12) 

(13) 

It would be evaluated for each column nq of N. The one with the largest value of 

cq> 0 is chosen to enter. 

If c,iO for all columns in N, the algorithm terminates at an optimal r, unless 

the current approximation is degenerate and rj = 0 for j > n - m residuals (so one of 

the zj = 0). This may be seen by interpreting the numerator of (13) as a directional 

derivative in the direction from r’ to r. Minus the right hand derivative of (7) at t = 0 
is the numerator of the expression in (11) which therefore measures the rate of 

decrease in g, as one moves away from the current approximation in the direction 

where o = B-‘n,. Similarly the left hand derivative at t = 0 in (7) is the numerator 

of (12), so it measures the rate of decrease as one moves from the current approxi- 

mation in the direction -wq. 

If c,<O, for a certain q, the directional derivative of g along the line 

r + tw, E I7= {x : Ax = b} is always non-negative, by convexity, and g(r) sg(r + tw,) 
for all t. If c,50 for all q = 1, . . . , n-m, then g(r)rg(r+ tw,) for all the wq, so no 

non-basic column may replace a basic one and reduce g. 

If no basic residual is zero, the current r is optimal, by the geometry of the pro- 

blem. The graph of g is a convex polytope in R”+’ comprised of (n-m)- 

dimensional hyperplane ‘pieces’. The vertices correspond to points (r,g(r)) for 

which Ar=b (an (n -m)-dimensional hyperplane in R”) intersected with n -rn 

hyperplanes T;, = 0, rj, = 0, . . . , r;,_, = 0, for any choice of n - rn different indices 

from the set (1, . . . . nj. Such re R” are O-dimensional hyperplanes, and there are 

(&) of them. 

Certain pairs of vertices are connected by edges, l-dimensional hyperplanes in the 

polytope defined by {r, g(r) : Ar = b and Til = 0, . . . , ri,_,_ I = 0} . A given vertex 

would have at least n - m edges emanating from it, one corresponding to the relaxa- 

tion of each of the conditions r,, = 0, . . . , Ti,~ m = 0. 
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A degenerate vertex (r,g(~)) has j>n - M edges, one for each condition rj =O, 
i=i I, . . . ,i,-,; j-n + m other ‘;‘S = 0 whilst maintaining Ar=b. In the non- 

degenerate case the condition cP5 0, all p, guarantees that there is no improvement 

along any edge, and by convexity in any direction in Z7. 

While it is easy to diagnose degeneracy, it may be complicated to deal with. For 

this reason we finesse the issue and leave degeneracy as a separate problem, to be 

treated on its own. 

The criterion, (13), for selecting an entering column is analogous to that from the 

BS LAD algorithm. Other LAD methods like BR and BCS choose the column based 

only on directional derivatives. BS seems to be the only method using normalized 

directional derivatives. This has the nice property of removing scaling differences 

between the n,. The particular normalization used in (13) may partly account for 

the superior performance of BS. The direction of descent is chosen with reference 

to weighted medians (9), a concept that characterizes l-dimensional LAD fits. The 

L2 normalized gradient used by Goldfarb and Reid [24] to choose a descent direc- 

tion for the Simplex method would probably be less effective than (13), on LAD 

problems. This conjecture is as yet, untested. 

A convenient data structure for implementing this algorithm begins with the 

augmented matrix A’= (B 1 N 1 b) premultiplied by B-l. The matrix 

D=(IIB-‘NIBP’@ (14) 

contains the information that the vector cr = (a(l), . . . , a(m)) of indices pointing to 

the basic columns is (1, . . . , m), that the vector cc=(oc(l), . . ..qc(n-m)) of indices 

pointing to non-basic columns is (m + 1, . . . , n), and that z = B-lb gives the values 

of the non-zero components of r : ‘o(i) = Zi and rOc(i) = 0. 

To find the column of N that will become basic, the criterion c4 in (13) is 

evaluated for each q = 1, . . . , n -m. The D’S are the columns of B-‘N, from (6). 

Once the qth element of cc (call it j; initially j= d(q) = m + q) has been selected 

to enter, and the pth element of cr is chosen to leave, (14) is updated by a pivot step 

using Jordan elimination: the pth row of D is multiplied by a constant so the jth 

column entry is 1; then multiplies of row p are added to each other row so that jth 

column entries become zero. 

If E is the m by m matrix that effects these steps, D now becomes 

D’=ED=(E/EB-‘NjEBP1b). (13 

The new basis pointers are j’= (1, . . . , p - 1, m + q, p + 1, . . . , m) and the non-basic 

ones are (d)C=(m+l,...,m+q-l,p,m+q+l,...,n). EB-’ is the inverse of the 

new basis matrix B’=A(a’), formed by taking columns from A according to o’, and 

z’= EB-‘b are the non-zero components of the new solution r’. In general, after 

several steps G points to m columns of the matrix that comprise an identity, cc to 

the n - m columns corresponding to B-‘N for the current basis/nonbasis partition 

of A, and the (n + l)st column gives the values of the basic residuals: ‘0(j) =zi. 

Suppose we are given X and y in (l), X an n by k matrix of full rank. To convert 
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the LAD fitting problem into (3) we require an n -k by n matrix A of full row rank 

that satisfies AX=O. Write A = (B 1 N), B, n-k by n-k, and X=(z), where X, 

is n-k by k and X, is k by k, and we suppose without loss of generality that X, 

is invertible. Then BX,+NX,= 0 and if we take B=Z, NX, = -X,. Transposing, 

N is defined by 

XrNr z -XT N BY (16) 

n-k linear systems each of size k. Using Gaussian elimination, and backsolving, 

N can be found in about +k3 + (n - k)k2 =nk2- +k3 multiplication and division 

operations. This initializes (14) with (I\ N / b), w h ere b =Ay. It is interesting that an 

initial solution using BS directly on (1) would cost nk2 steps, so translation from 

(1) to (3) seems to require no computational overhead. 

This description appears in succinct algorithmic form in the appendix. The per- 

formance of the algorithm is compared with that of BS on variety of LAD pro- 

blems, (1). The results appear in the next section. 

3. Computational experience 

In this section we compare the computational cost of solving (1) directly using BS 

with that of translating (1) to (3), solving (3) using the algorithm (SS) of the previous 

section, and then obtaining the optimal c. Based on simple assumptions, SS should 

be cheaper, even when k<)n, a conjecture that is supported by actual experience. 

One iteration of BS costs (in terms of multiplications and divisions) n(k+ 1) 

operations to update, plus the cost WM(n - k) of forming n - k ratios and then find- 

ing the weighted median. The first k iterations successively pivot new points into the 

fit and may be regarded as a start up phase, at total cost of k[n(k + 1) + WM(n - k)]. 

If N further iterations are required the total work for BS would be 

k[(n(k + 1) + WM(n - k)] + N[n(k + 1) + WM(n - k)] + +k3 + k2, (17) 

the last two terms reflecting the extra cost of solving y = Xc for c, once it is known 

which k rows of X determine the optimal fit. 

To initialize SS for (3) it costs nk2 - fk3 steps to find A plus a further (n - k)k 

to compute b =Ay. Each iteration then costs (n + l)(n -k) + WM(n - k), the first 

term being the cost of updating D in (14). Thus if A4 iterations of SS are required, 

the total work would be about 

nk2 + nk - fk3 - k2 + M[(n + l)(n - k) + WM(n - k)] + +(n - k)3 + (n - k)2 

(18) 

steps, the last two terms being the extra cost of finding c once the optimal Y is 

known. 

The difference between the BS and SS for just the start up phase and the final 

solve is therefore (17) - (18), with N=M or 

kWM(n-k)++k3+k2++[k3-(n-k)3]+[k2-(n-k)2]. (19) 
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Since WM(n - k) is n - k divisions for the ratios, plus the weighted median calcula- 

tion, (19) is positive even if k is substantially less than n - k. 

On the other hand if N and M (the non-startup iterations required by BS and SS 

respectively) are comparable, that phase of SS will be cheaper than the correspond- 

ing one for BS when kz+n. Putting these observations together, one expects SS to 

outperform BS even when k<+n, and for fixed n, the advantage should increase 

with k. 

To evaluate the validity of the assumptions on which the foregoing argument is 

based, we performed actual comparisons of BS with SS. First we approximated 

f(x) = fi on [0, l] by the LAD polynomial Qk_, of degree k - 1, based on n + 1 

equally spaced points ti = i/n, i = 0, 1, . . . , n. We thus minimized 

a fit of the form (1) with ri=fi and xQ=t/-‘. We used n=15 and k=5,7,9,11. 

The results appear in Table 1. The iteration counts for BS include the k start up 

steps, so they measure N+ k. These results do not seem to contradict the assumption 

that M from (18) and N (from (17) are comparable. Execution timings may be 

misleading because they reflect features of hardware, and peculiarities of coding. 

Nevertheless the figures in Table 1 do accord with the conjecture that SS is more 

efficient than BS when k>+n and the advantage improves as k increases. 

Next we fit regression models of the form 

following the procedue of [2]. Thus a sample of size n from (20) was generated as 

follows. For each i= 1, . . . , n, successive random numbers Xi2,Xi3, . ...+, U; were 

generated. We set Xi, = 1 and formed JJi = CiXil+ a*. + c,Xik + Ui. The C; were taken to 

be v’j so the columns of X=(xi,) would be scaled differently. 

The xij and ui were taken to be centered Pareto random numbers of index 

(r = 1.2, generated using the density function 

P(f)=CY/[l +@-#+a], t>a= %/(a- 1). 

They would have mean zero and infinite variance. 

Table 1 

Comparison of CPU times and iteration counts for LAD approximation of fi on [O, l] by I,“=, c,t’- ’ 

based on 16 equally spaced points fi=i/15, i=O,..., 15 

k=5 k=l k=9 k=ll 

CPU ITER CPU ITER CPU ITER CPU ITER 

BS 0.036 11 0.044 12 0.082 16 0.088 12 

ss 0.032 7 0.042 7 0.046 9 0.042 6 
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Table 2 

Comparison of CPU times and iteration counts summed over 10 independent repetitions of fitting the 

model (20) for n = 10 and X, U distributed as Pareto (1.2) 

k=4 k=6 k=8 

CPU ITER CPU ITER CPU ITER 

BS 0.16 65 0.28 86 0.32 94 

ss 0.18 31 0.16 25 0.12 10 

Table 3 

Comparison of CPU times and iteration counts summed over 10 independent repetitions of fitting the 

model (20) for n = 50 and X, U distributed as Pareto (1.2) 

k=18 k=22 k=26 k=30 k=34 

BS 

ss 

CPU ITER CPU ITER CPU 1TER CPU ITER CPU ITER 

1.46 324 10.04 362 13.06 395 17.20 452 20.70 473 

6.50 180 7.16 189 1.34 166 1.92 170 8.46 158 

Once (X 1 y) is generated LAD estimates of c using BS and SS are obtained. The 

process is then repeated independently until 10 samples from (20) have been con- 

sidered. In this way the Monte-Carlo results won’t be too strongly influenced by a 

short sequence from the random number generator. 

Table 2 contains results for n = 10 and Table 3 for n = 50. The CPU times are net 

of generating the samples of (20) and are accumulated over the 10 repetitions; the 

iteration counts are also summed. 

In both tables, the iterations differ by about 10k. Since BS iterations include the 

k startup steps, this finding again supports the assumption that M from (18) and 

N from (17) are comparable, since over 10 repetitions we would expect such a dif- 

ference between the counts. Also the CPU timings suggest that SS < BS for k> +n 

and that the difference. BS-SS increases with k. 

4. Concluding remarks 

We have outlined an algorithm, SS, for LAD fitting. Some computational 

evidence suggests that it may be an interesting competitor to existing procedures as 

the dimension k grows towards n, the number of points to be fit. However some 

provisos are necessary. 

A practical version of the algorithm would need to use a different data structure 

because the tableau form in (14) is prone to numerical instability. Similarly the in- 

itialization phase could be implemented more stably than the technique suggested 

by (16). 
Finally, it remains to see whether the advantage SS enjoyed over BS would be 
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maintained in better implementations of both algorithms, and over a larger class of 

problems. It would also be interesting to compare Simplex on dense examples of (5) 

to SS operating on the non-parametric equivalent LAD fits. These questions are left 

for further study. 
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Appendix 

Given (xj,yi)ERk+l, i=l,... ,n as in (l), write m=n-k and X=(x, ,..., x,)~. 

The algorithm SS may be described as follows. 

Initialize 

(1) Renumbering the rows of (X ) y) if necessary so that X,, the bottom k rows 

of X, is invertible, solve the m linear systems XEN= --Xi for N, where X, denotes 

the top m rows of X. 

(2) D+(A lb) where A+(llN) is m by n and b=Ay. 

(3) V-(1, . . . , m), cc+-(m + 1, .,.) n). 

(4) r,(i)tbi, i=l,..., m, T~C(i)tO, i=m+l,..., n. 

Choose entering column 

(5) S+{i,lIiIm:bi=O} 

(6) For j= 1 thru k DO 

Ui+Dig'(j), i=l 9 . . ..m 
JV+- {i : b;, Ui opposite sign} 

S-(1,..., m1\Jv\ 2‘ 

cj+ )C~l”i/-CbIUiI l-1-C2-luil 

l+C”l”iI 

END 

(7) S-{l,...,k} 

(8) cq +max Cj 

(9) If $0 go to (11) 

(10) If ny=, ‘~(i,=O RETURN ‘degenerate’, else solve _Y,c(i)= Cl=, Xocci,jSj for 8 

and STOP. 
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Find leaving column 

(11) D~+Q,~c(~), i=l ,...,m 

(12) feweighted median of bl/uI,...,b,/u,, 0 with weights /ul\,...,/u,],l. 

(13) If f=b&,#O, go to (16) 

(14) SC-S\(q); If s=0, go to (10) 

(15) Go to (8) 

Update 

(16) Divide row p of D by Dpccc4) 

(17) For izp, (row i of D)+-(row i of D) - (row p of D) *Dioc(q) 

(18) d&-Wq) 

(19) r~ci,‘bi i= 1, . . . ,m; T~C(~)+O 

(20) Go to (5) 
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